Publications (in chronological order)

  1. Jema S, Chen C, Humphrey L, Karmarkar S, Ferrari F, Joglekar AP: Signaling protein abundance modulates the strength of the spindle assembly checkpoint. Curr Biol 33(2): 4505, 2023. PMID: 37738972.
  2. Chen C, Piano V, Alex A, Han SJY, Huis In ‘t Veld PJ, Roy B, Fergle D, Musacchio A, Joglekar AP. The structural flexibility of MAD1 facilitates the assembly of the Mitotic Checkpoint Complex. Nat Commun. 2023 Mar 18;14(1):1529. PMC10024682.
  3. Chen C, Banerjee A, Humphrey L, Joglekar AP: Bub1-BubR1 heterodimerization promotes Spindle Assembly Checkpoint signaling. MBoC 33(10):br16, 2022. PM35767360
  4. Roy, Sim J, Han S, Joglekar AP: Kre28-Spc105 interaction is essential for Spc105 loading at the kinetochore. Open Biol, 12(1): 210274, 2022. PM35042402
  5. Roy B, Han S, Fontan A, Joglekar AP: Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling. Curr Biol, 32(1): 237-247, 2021. PM34861183/PMC8752509
  6. Kukreja AA, Kavuri S, Joglekar AP: Microtubule Attachment and Centromeric Tension Shape the Protein Architecture of the Human Kinetochore. Curr Biol 30(24): 4869-4881.e5, 2020. PM33035484 /PMC7755829
  7. Babhru Roy, Simon Han, Adrienne Fontan, Ajit P. Joglekar: The copy-number and varied strengths of MELT motifs in Spc105 balance the strength and responsiveness of the spindle assembly checkpoint. Elife 9:e55096, 2020.
  8. Babhru Roy, Vikash Verma, Janice Sim, Adrienne Fontan, Ajit P. Joglekar: Delineating the contribution of Spc105-bound PP1 to spindle checkpoint silencing and kinetochore-microtubule attachment regulation. The Journal of Cell Biology 218(12) 3926-3942, 2019.
  9. Chu Chen, Ian Whitney, Anand Banerjee, Palak Sekhri, David Kern, Adrienne Fontan, John J. Tyson, Iain M. Cheeseman, Ajit P. Joglekar: Ectopic activation of the Spindle Assembly Checkpoint reveals its biochemical design and physiological tuning. Current Biology 29(1): 104-119, 2019.
  10. Humphrey L, Felzer-Kim I, Joglekar AP: Stu2 acts as a microtubule destabilizer in metaphase budding yeast spindles. Mol Biol Cell 29(3): 247-255, 2018.
  11. Joglekar AP, Kukreja AA: How Kinetochore Architecture Shapes the Mechanisms of Its Function. Curr Biol 27(16): R816-R824, 2017.
  12. Aravamudhan P, Chen R, Roy B, Sim J, Joglekar AP: Dual mechanisms regulate the recruitment of spindle assembly checkpoint proteins to the budding yeast kinetochore Molecular Biology of the Cell 27 (22): 3405-3417, 2016.
  13. Joglekar AP: A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. Biology (Basel) 5(4): 2016.
  14. Joglekar AP, Aravamudhan P: How the kinetochore switches off the spindle assembly checkpoint. Cell Cycle 15(1): 7-8, 2016.
  15. Verma V, Mallik L, Hariadi RF, Sivaramakrishnan S, Skiniotis G, Joglekar AP: Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds. PLoS One 10(9): e0137125, 2015.
  16. Aravamudhan P, Goldfarb AA, Joglekar AP: The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signaling. Nature Cell Biology 17(7): 868-79, 2015.
  17. Aravamudhan P, Felzer-Kim I, Gurunathan K, Joglekar AP: Assembling the protein architecture of the budding yeast kinetochore-microtubule attachment using FRET. Current Biology 24(13): 1437-46, 2014.
  18. Aravamudhan P, Felzer-Kim I, Joglekar AP: The Budding Yeast Point Centromere Associates with Two Cse4 Molecules during Mitosis. Current Biology 23(9): 770-4, 2013.
  19. Yao J, Liu X, Sakuno T, Li W, Xi Y, Aravamudhan P, Joglekar A, Li W, Watanabe Y, He X: Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast Journal of Biological Chemistry 288(26): 19184-19196, 2013.
  20. Joglekar, AP, Chen, T., Lawrimore, J.: A sensitized emission-based calibration of FRET efficiency for probing the architecture of macromolecular machines Cell and Molecular Bioengineering 6(4): 369-382, 2013.
  21. Hung CW, Aoh QL, Joglekar AP, Payne GS, Duncan MC: Adaptor autoregulation promotes coordinated binding within clathrin coats. Journal of Biological Chemistry 287(21): 17398-407, 2012.
  22. Bloom K, Joglekar A: Towards building a chromosome segregation machine Nature 463(7280): 446-456, 2010.
  23. Joglekar AP, Bloom KS, Salmon ED: Mechanisms of force generation by end-on kinetochore-microtubule attachments Current Opinion in Cell Biology 22(1): 57-67, 2010.
  24. Johnston K, Joglekar A, Hori T, Suzuki A, Fukagawa T, Salmon ED: Vertebrate kinetochore protein architecture: Protein copy number Journal of Cell Biology 189(6): 937-943, 2010.
  25. Joglekar AP, DeLuca JG: Chromosome Segregation: Ndc80 Can Carry the Load Current Biology 19(10): R404-R407, 2009.
  26. Ribeiro SA, Gatlin JC, Dong Y, Joglekar A, Cameron L, Hudson DF, Farr CJ, McEwen BF, Salmon ED, Earnshaw WC, Vagnarelli P: Condensin regulates the stiffness of vertebrate centromeres Molecular Biology of the Cell 20(9): 2371-2380, 2009.
  27. Joglekar AP, Bloom K, Salmon ED: In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Current Biology 19(8): 694-9, 2009.
  28. Wan X, O’Quinn RP, Pierce HL, Joglekar AP, Gall WE, DeLuca JG, Carroll CW, Liu ST, Yen TJ, McEwen BF, Stukenberg PT, Desai A, Salmon ED: Protein architecture of the human kinetochore-microtubule attachment site. Cell 137(4): 672-84, 2009.
  29. Gardner MK, Bouck DC, Paliulis LV, Meehl JB, O’Toole ET, Haase J, Soubry A, Joglekar AP, Winey M, Salmon ED, Bloom K, Odde DJ: Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules Cell 135(5): 894-906, 2008.
  30. Joglekar AP, Salmon ED, Bloom KS: Counting Kinetochore Protein Numbers in Budding Yeast Using Genetically Encoded Fluorescent Proteins Methods in Cell Biology 85: 127-151, 2008.
  31. Yeh E, Haase J, Paliulis LV, Joglekar A, Bond L, Bouck D, Salmon ED, Bloom KS: Pericentric Chromatin Is Organized into an Intramolecular Loop in Mitosis Current Biology 18(2): 81-90, 2008.      
  32. Bouck DC, Joglekar AP, Bloom KS: Design features of a mitotic spindle: Balancing tension and compression at a single microtubule kinetochore interface in budding yeast Annual Review of Genetics 42: 335-359, 2008.
  33. Gardner MK, Haase J, Mythreye K, Molk JN, Anderson M, Joglekar AP, O’Toole ET, Winey M, Salmon ED, Odde DJ, Bloom K: The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. Journal of Cell Biology 180(1): 91-100, 2008.
  34. Kudryashov SI, Joglekar AP, Mourou G, Herbstman JF, Hunt AJ: Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces Applied Physics Letters 91:  2007.
  35. Joglekar AP, Bouck D, Finley K, Liu X, Wan Y, Berman J, He X, Salmon ED, Bloom KS: Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. The Journal of cell biology 181(4): 587-94, 2008.
  36. Joglekar AP, Bouck DC, Molk JN, Bloom KS, Salmon ED: Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biology 8(6): 581-5, 2006. PM16715078
  37. Joglekar AP, Liu HH, Meyhöfer E, Mourou G, Hunt AJ: Optics at critical intensity: applications to nanomorphing. Proceedings of the National Academy of Sciences of the United States of America 101 (16): 5856-61, 2004.
  38. Joglekar AP, Liu HH, Meyhofer E, Mourou G, Hunt, AJ: A Study of the Deterministic Character of Optical Damage by Femtosecond Laser Pulses and Applications to Nanomachining Applied Physics B – Lasers 77: 25-30, 2003.
  39. Joglekar AP, Hunt AJ: A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophysical Journal 83(1): 42-58, 2002.
  40. Kunte, K., Joglekar, AP, Ghate, U., Pramod, P.: Patterns of butterfly, bird and tree diversity in the Western Ghats Current Science 77: 577-86, 1999.